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The recent surge in the network modeling of complex systems has set the stage for a new era in the
study of fundamental and applied aspects of optimization in collective behavior. This Focus Issue
presents an extended view of the state of the art in this field and includes articles from a large
variety of domains in which optimization manifests itself, including physical, biological, social, and
technological networked systems. © 2007 American Institute of Physics.
�DOI: 10.1063/1.2751266�

One of the broadest areas of research, optimization has a
very long history. It comprises the variational principles
in physics and engineering, the survival-of-the-fittest
principles that pervade biology and economics, the
founding hypotheses of numerous computer algorithms,
and the frameworks for addressing the improvement of
efficiency in various contexts. Whether a fact or a goal, a
natural process or a man-made system, the apparently
ubiquitous striving for optimization generates continuing
appeal among researchers. But what is new about opti-
mization in networked systems?

Real-world systems do not operate isolated from each
other. While a neuron can be studied in a laboratory setting,
it has not evolved to work independently of the activity of
other neurons nor has the brain evolved to work indepen-
dently from the organism. In a hierarchy of scales, many
systems are formed by the interconnection of subsystems
that may have different �or even opposing� optimization
goals than the global system which they are part of. Expect-
edly, the structure of these interconnections will influence the
global performance and hence complex network research1,2

is a key ingredient for studying optimal system behavior �see
Fig. 1�. Not surprisingly, various structural and dynamical
network properties have been explicitly related to the opti-
mization of specific functions �see, e.g., Refs. 3–5 for early
works and Refs. 6–10 for recent reviews�. In this context,
there are entire classes of problems, ranging from epidemic
spreading11 to the control of cascading failures,12 which are
naturally defined as extremization problems. Others, such as
the unexpected robustness observed in some systems, in-
volve no a priori optimization conditions and yet reveal en-
hanced properties shaped by the evolution of the system.

Optimal behavior is most often connected to a function
that the system performs. In numerous cases the function is
multivariate or multifaceted. For example, the power grid
has as its main role the transport of electric energy while

minimizing generation and distribution costs and maximiz-
ing at the same time reliability and quality of service. How
network structure influences the global performance of such
systems is probably the question that is posed most fre-
quently in network research. Conversely, the notion of a net-
work acts as a unifying theme in systems optimization. In-
deed, with the increasing abundance of empirical and
theoretical results, numerous optimization questions involv-
ing apparently unrelated systems can be addressed using a
common formalism of complex networks of interacting
units.

Traditionally, optimization has a strict mathematical defi-
nition, which refers to obtaining the solutions that strictly
extremize a well-defined functional. Here we adopt a looser
definition of the word by extending it to include a tendency
of the system to improve its behavior as a result of a selec-
tion pressure naturally or artificially imposed. Many real-
world problems are complex, with a very large parameter
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FIG. 1. �Color� Illustration of levels of abstraction represented as networks
that underlie a complex system, in this case an urban area. What network is
relevant to an optimization problem depends on the specific research ques-
tion at hand. The inlay images are courtesy of the TRANSIMS and EpiSims
teams at LANL and Virginia Bioinformatics Institute �http://ndssl.vbi.vt.edu�
�Refs. 11 and 29�.
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space. Accordingly, most quests for finding “the” optimizing
or “the” best solution are doomed to failure or are not real-
istic. Finding a “good enough solution” or a “better solu-
tion,” perhaps even in an iterative manner, becomes, how-
ever, a workable alternative. Processes in nature follow this
path. Nature has evolved biological systems under pressure
towards increasingly optimal behavior and much can be
learned by studying the behavior of these systems. Despite
the complexity of the problems, the original work on scale-
free networks already suggested that there could be some
general principles in network optimization:2 many realistic
networks, including the Internet and collaboration networks,
tend to grow and evolve much in the same way as some
biological systems do. If selection is important in biology,
then it is expected to be important in other evolving systems
as well.

BROAD VIEW OF NETWORK OPTIMIZATION

There are fundamentally four major types of optimiza-
tion problems related to networked systems �the constraints
are considered to be implicit in the functional�.

Type I: Structural Optimization. Find a graph G�V ,E�,
where V is the set of nodes and E is the set of edges that
extremize a given structural functional F�G�.

Type II: Dynamics Optimization on Static Graphs. For a
given graph G�V ,E� and a dynamical system � on G,

��x, ẋ, . . . ,���,t� = 0 , �1�

find the values of the parameters ��� that extremize a global
functional F��� of the dynamics �. The variables x are
quantities associated with properties of the nodes and edges
in the network.

Type III: Structural Optimization for Dynamics. Given
the dynamical system �1� and a set of parameters ���, find a
graph G�V ,E� for which a global functional F��� of the
dynamics � is extremized.

Type IV: Dynamics-Driven Network Optimization. If the
graph of the network evolves in time �i.e., G�V ,E�
=G�V ,E , t��, either through an independent dynamics or
through coupling to the dynamics in �1�, find the values of
the parameters ��� for which a global functional F�G ,�� of
the dynamics � and of the graph G�V ,E , t� is extremized.

Type I is a purely graph theoretic problem in that one
looks for structures that have some specified properties. For
example, given a fixed degree sequence on N nodes, con-
struct a graph that minimizes the diameter. Problems involv-
ing optimal assignment of edge-weights and -directionality
also belong to this class. Type II is a “flow extremization”
problem. For example, given a roadway network, what
should be the speed limit for cars on every street such that
jamming is minimized? Type III commonly occurs in design
problems: given a flow dynamics, such as packet flow in
packet switched networks, find the graph structures optimal
for information throughput. Other important examples in-
clude the optimization of synchronous and coherent behav-
ior. Type IV is also common, though sometimes very difficult
to solve because properties of both graph structure and dy-
namics are allowed to change. This is also the most relevant
case to the study of emergent properties in evolving systems.

Robustness and vulnerability problems fall into this class
when the flow through the network can change the structure,
which in turn changes the flow. Prime examples of this are
cascading failures in networked systems, such as power grids
�see the article by Dobson et al.14 in this issue�.

Optimization in complex networks is thus of broad sig-
nificance, incorporating static and dynamical properties and
serving as an instrument to analyze and control the evolution
and function of both natural and engineered systems.

THIS FOCUS ISSUE

This Focus Issue brings together contributions on net-
work structure and dynamics, with emphasis on optimization
problems and their applications to infrastructure and biologi-
cal systems. Key topics discussed include the optimization in
the evolution and functioning of biological systems, optimi-
zation and cost balance analysis in the design of infrastruc-
ture networks, and optimization principles emerging from the
interplay between network structure and dynamics.

In the context of technological and infrastructure net-
works, Danila et al.13 consider routing optimization in net-
work transport, Dobson et al.14 discuss how competition be-
tween efficiency and robustness leads to a SOC-based model
for the power-grid dynamics, Guclu et al.15 study how fluc-
tuations and synchrony in distributed processing networks
relate to the network structure, Gulbahce16 addresses the op-
timization of jamming on gradient networks, while
Teuscher17 analyzes the impact of performance metrics in
network-on-chip designs.

In the context of biological networks, Almaas18 studies
metabolic flux patterns derived from flux-balance optimiza-
tion assumptions, Balcan and Erzan19 discuss a statistical
physics description of content-based networks that can serve
as models for gene regulatory networks, Mahmoudi et al.20

consider the propagation of external regulatory information
and asynchronous dynamics in random Boolean networks,
and Riecke et al.21 study a rich variety of dynamical states in
the activity of small-world networks of excitable neurons.

Other dynamical processes are also considered. Barrat et
al.22 address the emergence of consensus in linguistic con-
ventions, Bogacz et al.23 consider condensation and far from
equilibrium dynamics on networks, and Freire et al.24 ana-
lyze synchronization and complex spatio-temporal patterns
in networks of cellular automata.

More related to the structural properties of the networks,
Bianconi25 studies how the degree distribution follows from
the extremization of a free-energy function, Kim and
Kahng26 derive spectral densities for an important class of
weighted complex networks, Kim et al.27 analyze the fractal
properties of complex networks, and Minnhagen and
Bernhardsson28 study how the degree distribution relates to
maximization of information.

Summing up, optimization of performance and robust-
ness is a common property of naturally evolved systems and
is a desirable property in most man-made systems. There is
now increasing evidence that the functioning of complex
systems as diverse as cellular metabolism and power grids
lies deep in the properties of underlying complex networks.
This evidence has generated increasing interest on dynamical
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processes in complex networks and on how the interplay
between these processes and network structure influences the
performance and robustness of the system. Notably, estab-
lished areas such as resource management, epidemic spread-
ing, communication processes, synchronization dynamics,
cellular biology, and cascading failures are at the leading
edge of the current research on network optimization. We
hope that this Focus Issue will provide the reader with an up
to date overview of this exciting area of research.
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